Structural Magnetic Resonance Imaging
DOI: 10.15154/z563-zd24 (Release 5.1)
List of Instruments
Name of Instrument | Table Name |
sMRI - Cortical Thickness (Desikan) | mri_y_smr_thk_dsk |
sMRI - Cortical Thickness (Destrieux) | mri_y_smr_thk_dst |
sMRI - Cortical Thickness (Fuzzy Clustering) | mri_y_smr_thk_fzy |
sMRI - Sulcal Depth (Desikan) | mri_y_smr_sulc_dsk |
sMRI - Sulcal Depth (Destrieux) | mri_y_smr_sulc_dst |
sMRI - Sulcal Depth (Fuzzy Clustering) | mri_y_smr_sulc_fzy |
sMRI - Surface Area (Desikan) | mri_y_smr_area_dsk |
sMRI - Surface Area (Destrieux) | mri_y_smr_area_dst |
sMRI - Surface Area (Fuzzy Clustering) | mri_y_smr_area_fzy |
sMRI - T1 Intensity-Gray/White Contrast (Desikan) | mri_y_smr_t1_contr_dsk |
sMRI - T1 Intensity-Gray Matter (Desikan) | mri_y_smr_t1_gray_dsk |
sMRI - T1 Intensity-White Matter (Desikan) | mri_y_smr_t1_white_dsk |
sMRI - T1 Intensity-Gray/White Contrast (Destrieux) | mri_y_smr_t1_contr_dst |
sMRI - T1 Intensity-Gray Matter (Destrieux) | mri_y_smr_t1_gray_dst |
sMRI - T1 Intensity-White Matter (Destrieux) | mri_y_smr_t1_white_dst |
sMRI - T1 Intensity-Gray/White Contrast (Fuzzy Clustering) | mri_y_smr_t1_contr_fzy |
sMRI - T1 Intensity-Gray Matter (Fuzzy Clustering) | mri_y_smr_t1_gray_fzy |
sMRI - T1 Intensity-White Matter (Fuzzy Clustering) | mri_y_smr_t1_white_fzy |
sMRI - T1 Intensity (Subcortical) | mri_y_smr_t1_aseg |
sMRI - T2 Intensity-Gray/White Contrast (Desikan) | mri_y_smr_t2_contr_dsk |
sMRI - T2 Intensity-Gray Matter (Desikan) | mri_y_smr_t2_gray_dsk |
sMRI - T2 Intensity-White Matter (Desikan) | mri_y_smr_t2_white_dsk |
sMRI - T2 Intensity-Gray/White Contrast (Destrieux) | mri_y_smr_t2_contr_dst |
sMRI - T2 Intensity-Gray Matter (Destrieux) | mri_y_smr_t2_gray_dst |
sMRI - T2 Intensity-White Matter (Destrieux) | mri_y_smr_t2_white_dst |
sMRI - T2 Intensity-Gray/White Contrast (Fuzzy Clustering) | mri_y_smr_t2_contr_fzy |
sMRI - T2 Intensity-Gray Matter (Fuzzy Clustering) | mri_y_smr_t2_gray_fzy |
sMRI - T2 Intensity-White Matter (Fuzzy Clustering) | mri_y_smr_t2_white_fzy |
sMRI - T2 Intensity (Subcortical) | mri_y_smr_t2_aseg |
sMRI - Volume (Desikan) | mri_y_smr_vol_dsk |
sMRI - Volume (Destrieux) | mri_y_smr_vol_dst |
sMRI - Volume (Fuzzy Clustering) | mri_y_smr_vol_fzy |
sMRI - Volume (Subcortical) | mri_y_smr_vol_aseg |
General Information
An overview of the ABCD Study® can be found at abcdstudy.org and detailed descriptions of the assessment protocols are available at ABCD Protocols. This page describes the contents of various instruments available for download. To understand the context of this information, refer to the release notes Start Page and Imaging Overview.
Overview
- Image types
- T1-weighted (T1w) 3D structural images
- T2-weighted (T2w) 3D structural images
- Image processing
- corrected for gradient nonlinearity distortions (Jovicich, et al., 2006)
- T2w images registered to T1w images using mutual information (Wells, et al., 1996)
- intensity non-uniformity correction based on tissue segmentation and sparse spatial smoothing
- resampled with 1 mm isotropic voxels into rigid alignment with an atlas brain
- Cortical surface reconstruction
- FreeSurfer v7.1.1 (https://surfer.nmr.mgh.harvard.edu)
- skull-stripping (Segonne, et al., 2004)
- white matter segmentation, initial mesh creation (Dale, et al., 1999)
- correction of topological defects (Fischl, et al., 2001; Segonne, et al., 2007)
- surface optimization (Dale, et al., 1999; Dale and Sereno, 1993; Fischl and Dale, 2000)
- nonlinear registration to a spherical surface-based atlas (Fischl, et al., 1999b)
- Morphometry
- subcortical regional volume
- cortical volume
- cortical thickness (Fischl and Dale, 2000)
- cortical area (Chen, et al., 2012; Joyner, et al., 2009)
- sulcal depth (Fischl, et al., 1999a)
- Image intensity measures
- T1w and T2w intensity measures in white matter (-0.2 mm from gray/white boundary)
- T1w and T2w intensity measures in gray matter (+0.2 mm from gray/white boundary)
- Normalized T1w and T2w cortical gray/white intensity contrast (Westlye, et al., 2009)
- Regions of interest (ROIs)
- subcortical structures labeled with atlas-based segmentation (Fischl, et al., 2002)
- cortical regions labeled with the Desikan atlas-based classification (Desikan, et al., 2006)
- cortical regions labeled with the Destrieux atlas-based classification (Destrieux, et al., 2010)
- fuzzy-cluster parcels, based on genetic correlation of surface area (Chen, et al., 2012)
Methods
Image processing and analysis methods corresponding to ABCD Release 2.0.1 are described Hagler et al., 2019, NeuroImage. Image processing and analysis methods for the Adolescent Brain Cognitive Development Study (doi: 10.1016/j.neuroimage.2019.116091). Changes to image processing and analysis methods in Release 3.0 and Release 4.0 are documented below. No significant changes were made to the processing pipeline for Release 5.0.
Changes for ABCD 4.0
sMRI processing: registration to atlas
The sMRI processing pipeline has included registration to a pre-existing, custom in-house T1w atlas and rigid body resampling. In rare cases this registration step may fail (e.g., in some participants with enlarged ventricles), resulting in non-standard head orientations in the processed data for those participant-events. In the current processing pipeline, we use a new ABCD-specific atlas that reduces the frequency of failed registration to atlas.
sMRI processing: bias correction
The correction of sMRI T1w and sMRI T2w images for intensity inhomogeneity uses a smoothly varying bias field constrained to have uniform intensities in voxels segmented as white matter. In addition, outlier voxels, defined as voxels in the white matter mask with low T1w intensities or high T2w intensities, are removed from the white matter mask. This was done to prevent slight inaccuracies in the initial white matter mask from causing poor bias field estimation in those regions with outlier intensities in voxels labeled as white matter. In the current pipeline, the smoothing algorithm for generating the bias field was changed slightly to use a robust, sparse smoothing algorithm with parameters optimized for a slightly more flexible (less smooth) bias field to better handle locally steep intensity gradients. The removal of outlier voxels from the white matter mask was done iteratively and was limited to the outer band (~1 cm) of white matter. For T2w images, a bug in the previous implementation of the outlier removal resulted in a sparse, slightly shrunken white matter mask. Correcting this issue resulted in a less sparse white matter mask and more spatially uniform bias correction for the T2w images than before.
T2w registration to T1w
The procedure for registration of sMRI T2w to T1-weighted images involves a pre-registration of the T1w image to a T1w atlas, pre-registration of the T2w image to a T2w atlas (co-registered to the T1w atlas), and then fine registration between the T2w and T1w images using mutual information. In rare cases, the pre-registration of the T1w image to the T1w atlas essentially failed, subsequently resulting in a poor registration between the T2w and T1w images. To reduce the likelihood of registration failure, the T1w atlas was edited by applying a brain mask, preventing non-brain regions of the atlas from influencing the registration.
FreeSurfer version
The FreeSurfer version was updated from 5.3.0 to 7.1.1. Changes to FreeSurfer processing across versions are documented here. Differences in the resulting surfaces and subcortical ROIs were generally quite small and free of systematic bias, but it should be noted that the sulcal depth measure differs in scale by a factor of 10 (i.e., now in units of mm instead of cm), resulting in large differences in the “sulc” ROI-averages included in the tabulated imaging data (in data NDA data structure abcd_smrip102
).
Changes to data dictionaries
- new versions of NDA data structures
abcd_smrip102
,abcd_smrip202
, andabcd_smrip302
based onabcd_smrip101
andabcd_smrip201
- split data structures to separate FreeSurfer-derived morphometry, T1w intensities, and T2w intensities
- removed unused aliases
- new versions of NDA data structures
abcd_mrisdp102
,abcd_mrisdp202
, andabcd_mrisdp302
based onabcd_mrisdp101
andabcd_mrisdp201
- split data structures to separate FreeSurfer-derived morphometry, T1w intensities, and T2w intensities
- removed unused aliases
References
Chen, C.H., Gutierrez, E.D., Thompson, W., Panizzon, M.S., Jernigan, T.L., Eyler, L.T., Fennema-Notestine, C., Jak, A.J., Neale, M.C., Franz, C.E., Lyons, M.J., Grant, M.D., Fischl, B., Seidman, L.J., Tsuang, M.T., Kremen, W.S., Dale, A.M. (2012) Hierarchical genetic organization of human cortical surface area. Science, 335:1634-6.
Dale, A.M., Fischl, B., Sereno, M.I. (1999) Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage, 9:179-94.
Dale, A.M., Sereno, M.I. (1993) Improved Localizadon of Cortical Activity by Combining EEG and MEG with MRI Cortical Surface Reconstruction: A Linear Approach. J Cogn Neurosci, 5:162-76.
Desikan, R.S., Segonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C., Blacker, D., Buckner, R.L., Dale, A.M., Maguire, R.P., Hyman, B.T., Albert, M.S., Killiany, R.J. (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage, 31:968-80.
Destrieux C, Fischl B, Dale A, Halgren E. (2010) Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage. 2010 Oct 15;53(1):1-15.
Fischl, B., Dale, A.M. (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A, 97:11050-5.
Fischl, B., Liu, A., Dale, A.M. (2001) Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Trans Med Imaging, 20:70-80.
Fischl, B., Salat, D.H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., van der Kouwe, A., Killiany, R., Kennedy, D., Klaveness, S., Montillo, A., Makris, N., Rosen, B., Dale, A.M. (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron, 33:341-55.
Fischl, B., Sereno, M.I., Dale, A.M. (1999a) Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage, 9:195-207. Fischl, B., Sereno, M.I., Tootell, R.B., Dale, A.M. (1999b) High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum Brain Mapp, 8:272-84.
Hagler, D.J., Jr., Hatton, S., Cornejo, M.D., Makowski, C., Fair, D.A., Dick, A.S., Sutherland, M.T., Casey, B.J., Barch, D.M., Harms, M.P., Watts, R., Bjork, J.M., Garavan, H.P., Hilmer, L., Pung, C.J., Sicat, C.S., Kuperman, J., Bartsch, H., Xue, F., Heitzeg, M.M., Laird, A.R., Trinh, T.T., Gonzalez, R., Tapert, S.F., Riedel, M.C., Squeglia, L.M., Hyde, L.W., Rosenberg, M.D., Earl, E.A., Howlett, K.D., Baker, F.C., Soules, M., Diaz, J., de Leon, O.R., Thompson, W.K., Neale, M.C., Herting, M., Sowell, E.R., Alvarez, R.P., Hawes, S.W., Sanchez, M., Bodurka, J., Breslin, F.J., Morris, A.S., Paulus, M.P., Simmons, W.K., Polimeni, J.R., van der Kouwe, A., Nencka, A.S., Gray, K.M., Pierpaoli, C., Matochik, J.A., Noronha, A., Aklin, W.M., Conway, K., Glantz, M., Hoffman, E., Little, R., Lopez, M., Pariyadath, V., Weiss, S.R., Wolff-Hughes, D.L., DelCarmen-Wiggins, R., Feldstein Ewing, S.W., Miranda-Dominguez, O., Nagel, B.J., Perrone, A.J., Sturgeon, D.T., Goldstone, A., Pfefferbaum, A., Pohl, K.M., Prouty, D., Uban, K., Bookheimer, S.Y., Dapretto, M., Galvan, A., Bagot, K., Giedd, J., Infante, M.A., Jacobus, J., Patrick, K., Shilling, P.D., Desikan, R., Li, Y., Sugrue, L., Banich, M.T., Friedman, N., Hewitt, J.K., Hopfer, C., Sakai, J., Tanabe, J., Cottler, L.B., Nixon, S.J., Chang, L., Cloak, C., Ernst, T., Reeves, G., Kennedy, D.N., Heeringa, S., Peltier, S., Schulenberg, J., Sripada, C., Zucker, R.A., Iacono, W.G., Luciana, M., Calabro, F.J., Clark, D.B., Lewis, D.A., Luna, B., Schirda, C., Brima, T., Foxe, J.J., Freedman, E.G., Mruzek, D.W., Mason, M.J., Huber, R., McGlade, E., Prescot, A., Renshaw, P.F., Yurgelun-Todd, D.A., Allgaier, N.A., Dumas, J.A., Ivanova, M., Potter, A., Florsheim, P., Larson, C., Lisdahl, K., Charness, M.E., Fuemmeler, B., Hettema, J.M., Maes, H.H., Steinberg, J., Anokhin, A.P., Glaser, P., Heath, A.C., Madden, P.A., Baskin-Sommers, A., Constable, R.T., Grant, S.J., Dowling, G.J., Brown, S.A., Jernigan, T.L., Dale, A.M. (2019) Image processing and analysis methods for the Adolescent Brain Cognitive Development Study. Neuroimage, 202:116091.
Jovicich, J., Czanner, S., Greve, D., Haley, E., van der Kouwe, A., Gollub, R., Kennedy, D., Schmitt, F., Brown, G., Macfall, J., Fischl, B., Dale, A. (2006) Reliability in multi-site structural MRI studies: effects of gradient non-linearity correction on phantom and human data. Neuroimage, 30:436-43.
Joyner, A.H., J, C.R., Bloss, C.S., Bakken, T.E., Rimol, L.M., Melle, I., Agartz, I., Djurovic, S., Topol, E.J., Schork, N.J., Andreassen, O.A., Dale, A.M. (2009) A common MECP2 haplotype associates with reduced cortical surface area in humans in two independent populations. Proc Natl Acad Sci U S A, 106:15483-8.
Segonne, F., Dale, A.M., Busa, E., Glessner, M., Salat, D., Hahn, H.K., Fischl, B. (2004) A hybrid approach to the skull stripping problem in MRI. Neuroimage, 22:1060-75.
Segonne, F., Pacheco, J., Fischl, B. (2007) Geometrically accurate topology-correction of cortical surfaces using nonseparating loops. IEEE Trans Med Imaging, 26:518-29.
Wells, W.M., 3rd, Viola, P., Atsumi, H., Nakajima, S., Kikinis, R. (1996) Multi-modal volume registration by maximization of mutual information. Med Image Anal, 1:35-51.